(9)
Этот коэффициент изменяется от 0 до 1. Если элиминировать (совсем исключить или зафиксировать на постоянном уровне) влияние на
и
, то их "общая" связь превратится в "чистую", образуя чистый (частный) коэффициент линейной корреляции Пирсона:
(10)
Этот коэффициент изменяется от -1 до +1. Квадраты коэффициентов корреляции (2)-(4) называются коэффициентами (индексами) детерминации - соответственно парной, чистой (частной), множественной (совокупной):
(11)
акция доходность прогнозирование
Каждый из коэффициентов детерминации изменяется от 0 до 1 и оценивает степень вариационной определенности в линейной взаимосвязи переменных, показывая долю вариации одной переменной (y), обусловленную вариацией другой (других) - x и y. Многомерный случай наличия более трех переменных здесь не рассматривается.
Согласно разработкам английского статистика Р.Э. Фишера (1890-1962), статистическая значимость парного и чистого (частного) коэффициентов корреляции Пирсона проверяется в случае нормальности их распределения, на основании -распределения английского статистика В.С. Госсета (псевдоним "Стьюдент"; 1876-1937) с заданным уровнем вероятностной значимости
и имеющейся степени свободы
, где
- число связей (факторных переменных). Для парного коэффициента
имеем его среднеквадратическую ошибку
и фактическое значение
-критерия Стьюдента:
(12)
Для чистого коэффициента корреляции при расчете его
вместо (n-2) надо брать
, т.к. в этом случае имеется m=2 (две факторные переменные x и z). При большом числе n>100 вместо (n-2) или (n-3) в (6) можно брать n, пренебрегая точностью расчета.
Если tr > tтабл. , то коэффициент парной корреляции - общий или чистый является статистически значимым, а при tr ≤ tтабл. - незначимым.
Значимость коэффициента множественной корреляции R проверяется по F - критерию Фишера путем расчета его фактического значения
(13)
При FR > Fтабл. коэффициент R считается значимым с заданным уровнем значимости a и имеющихся степенях свободы и
, а при Fr≤ Fтабл - незначимым.
В совокупностях большого объема n > 100 для оценки значимости всех коэффициентов Пирсона вместо критериев t и F применяется непосредственно нормальный закон распределения (табулированная функция Лапласа-Шеппарда).
Сущность воспроизводства общественного капитала
В экономической науке видное место занимает теория капитала.
Зачастую, на практике капитал предприятия рассматривается как нечто
производное, как показатель, играющий второстепенную роль, при этом на первое
место, как правило, выносится непосре ...
Технико-экономические расчеты к проекту отделения по получению оксида европия
Отрасль народного хозяйства, в которой вещества и материалы
создаются главным образом путем химических превращений, называют химической
промышленностью. Последняя подразделяется на ряд отраслей.
Успехи химической промышленности тесно связаны с ...