Ранжирование выборочных данных, вычисление моды и медианы
Полигоном относительных частот называется ломаная линия с вершинами в точках:
, ͡pi (1.23)
По результатам вычислений составим табл.1.3 значений выборочной функции плотности. В первую строку таблицы поместим частичные интервалы, во вторую строку - середины интервалов, в третью строку запишем частоты - количество элементов выборки, попавших в каждый частичный интервал, в четвёртую строку запишем относительные частоты, в пятую строку запишем значения плотности относительных частот или значения выборочной, экспериментальной функции плотности.
По результатам вычислений функции плотности, представленной в таблице 1.3 можно сделать вывод, что в интервалах [39,32; 42,58) и [42,58; 45,84) больше всего элементов - по 17 в каждом. Объедим эти интервалы в один и вычислим моду: мода имеет один локальный максимум в окрестностях точки х = 44,21 с частотой ni = 18.
Анализ и планирование показателей по труду и заработной плате
экономический показатель заработная плата труд
Современный
этап научно-технического развития привел к качественному изменению роли
человека в торговле, превратив его в решающий фактор развития последней.
Объективные тенденции развития торговых ор ...